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Abstract. We present a new class of convex underestimators for arbitrarily nonconvex and twice
continuously differentiable functions. The underestimators are derived by augmenting the original
nonconvex function by a nonlinear relaxation function. The relaxation function is a separable
convex function, that involves the sum of univariate parametric exponential functions. An efficient
procedure that finds the appropriate values for those parameters is developed. This procedure
uses interval arithmetic extensively in order to verify whether the new underestimator is convex.
For arbitrarily nonconvex functions it is shown that these convex underestimators are tighter
than those generated by the �BB method. Computational studies complemented with geometrical
interpretations demonstrate the potential benefits of the proposed improved convex underestimators.
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1. Introduction

In this paper we address the class of C2 constrained nonlinear optimization
problems. The mathematical description of these problems is as follows

min
x

f �x�

s�t� hj�x�=0
 j=1
2
���
m1

gk�x��0
 k=1
2
���
m2

x∈X= �xL
xU �
 (1)

where x∈�n is the vector of variables, xL
xU ∈�n are the vectors of the lower and
upper bounds of the hyper-rectangular domain X⊆�n, f is the objective function
and hj�x�
gk�x� are the constraints of the problem. Generally, due to the presence
of nonconvex functions, problem (1) possesses many local minima. The larger
the number of local minima the more difficult the task of locating the global
minimum becomes. Global optimization problems belong to the class of NP-hard
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problems and therefore are generally very difficult to solve. Even proving that a
solution of (1) is not a local minimum is an NP-complete problem (see (Murty
and Kabadi (1987)) and (Pardalos and Schnitger (1988)).

Standard optimization algorithms, like Sequential Quadratic Programming
(Boggs and Tolle (1995)) or Interior Point (Methods Wright (1992)), guarantee
the location of a local optimum only. However, in many industrial and scientific
applications, such as process synthesis, design and control, computational chem-
istry and molecular biology, a local optimum does not suffice. In the last few
decades, a number of global optimization methods have been developed. These
methods can be classified into two broad categories: (i) Deterministic and (ii)
Stochastic. Deterministic methods (e.g., Adjiman et al. (1998a, b), Al-Khayyal
and Falk (1983), Horst and Tuy (1987), Porn et al. (1999), Ryoo and Sahini-
dis (1996), Sherali and Alameddine (1992), Smith and Pantelides (1996), Tuy
(1987)) guarantee to reach an �-neighborhood of the global optimum of prob-
lem (1) within a finite number of steps. An extensive coverage of the theory and
applications of deterministic methods can be found in (Floudas (2000)). On the
other hand, in stochastic methods (e.g., Gelatt et al. (1983), Goldberg (1987),
Rinnoy-Kan and Timmer (1987a), Rinnoy-Kan and Timmer (1987b), Schoen
(1991)) the probability of finding the global optimum of problem (1) goes to one
as the number of steps goes to infinity.

Many deterministic global optimization methods share the following two main
ideas: (i) generation of convex underestimators for the nonconvex functions
involved in (1) and (ii) partition of the feasible region into smaller ones. The
convex underestimators are important since they are used to construct a convex
optimization problem that provides a lower bound on the global optimum of the
original problem. As the subregions become smaller the convex lower bounding
problems approach the original nonconvex problem. This process progressively
leads to the determination of the global optimum by repetitively solving convex
optimization problems in different sub-domains of the original domain.

The �BB algorithm (Adjiman et al. (1998a, b), Floudas (2000), Maranas and
Floudas (1994b)), is a deterministic global optimization algorithm that partitions
the continuous feasible region using the Branch and Bound method in the con-
tinuous variables. At each node of the tree, convex underestimators are generated
by subtracting a parametric separable convex quadratic function (also referred to
as relaxation function) from each nonconvex function. The values of the parame-
ters in the relaxation function greatly influence the separation distance that exists
between the nonconvex function and its convex underestimator. The larger the
magnitude of those parameters the larger the separation distance is, and therefore
the looser the underestimator becomes. This affects the quality of lower bounds
on the global optimum, provided by the convex lower bounding problem. Due to
poor fathoming, lower bounds of bad quality can significantly increase the size
of the Branch and Bound tree and reduce the efficiency of the convergence rate
of the overall global optimization algorithm.
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The main objective of this work is to develop methods that provide convex
underestimators of arbitrarily nonconvex functions that are tighter than those
provided by �BB. This will not only reduce the size of the Branch and Bound
tree but also enhance the performance of the overall algorithm. The critical issue
regarding the quality of an underestimator is the relaxation function which is
subtracted from the nonconvex function it underestimates. We have developed
a new relaxation function that shares the same properties as the one in �BB.
That is, it is separable, parametric, convex, and non-negative for all x∈X. The
advantage of the new relaxation function is that its parameters are selected in
such a way that it always takes smaller values than the �BB relaxation function
in the whole domain X. As a result, when it is subtracted from a nonconvex
function it produces a convex underestimator that is tighter than that produced
when the �BB relaxation function is subtracted from the same function.

This paper is structured as follows. Section 2 presents an overview of the
underestimators used in the �BB global optimization algorithm. Section 3
describes the new relaxation function and its properties. Section 4 presents the
new underestimator and its properties. Section 5 discusses an iterative scheme
that verifies the convexity of the new underestimators. Section 6 presents several
examples where the new underestimators are compared with those produced
by �BB. Finally, Section 7 presents the coclusions of this work.

2. Overview of Convex Underestimators of the �BB Method

In �BB, a convex underestimator of a nonconvex function is constructed by
decomposing it into a sum of nonconvex terms of special type (e.g., linear,
bilinear, trilinear, fractional, fractional trilinear, convex, univariate concave) and
nonconvex terms of arbitrary type. The first type is then replaced by very tight
convex underestimators which are already known. A complete list of the tight
convex underestimators of the above special type nonconvex terms can be found
in Floudas (2000).

For the nonconvex terms of arbitrary type, whose convex envelops are not
known, a convex underestimator is generated by adding to them the relaxation
function, ��x���:

��x���=−
n∑

i=1

�i�xi−xL
i ��x

U
i −xi�

where �i�0, i=1
2
���
n. That is, if we assume that f �x� is an arbitrarily
nonconvex function, then

L�BB�x���=f �x�+��x��� (2)

is an underestimator of f �x�. Note that since ��xL���=��xU ���=0 the under-
estimator L�BB�x��� coincides with f �x� at the end-points of X. Also by noting
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that the relaxation function ��x��� is separable we can derive the following rela-
tionship that exists among the Hessian matrices of L�BB�x���
f �x� and ��x���

� 2L�BB�x���=� 2f �x�+2A (3)

where A=� 2��x���=diag��1
�2
���
�n�. From the above equation it can be
derived that L�BB�x�s�� is convex if and only if � 2L�BB�x��� is positive semi-
definite matrix. It is shown in (Adjiman et al. (1998b)) that if the parameters
�i
 i=1
2
���
n, have values greater than or equal to the negative one half of
the minimum eigenvalue of the Hessian matrix � 2f �x� in the whole domain
X= �xL
xU �, then the underestimator L�BB�x��� is convex function. However,
the calculation of the smallest eigenvalue of the Hessian matrix of an arbitrarily
nonconvex function is by itself a nonconvex optimization problem and therefore
very difficult to solve.

The above difficulty can be alleviated by using interval methods (see for
example, (Floudas (2000); Hansen (1992); Neumaier (1990)), and transforming
equation (3) into the equation

�� 2L�BB�x����= �� 2f �x��+2A
 (4)

where �� 2L�BB�x���� and �� 2f �x�� are the interval Hessians of the Hessian matri-
ces � 2L�BB�x��� and � 2f �x� respectively. If the interval matrix �� 2L�BB�x����
is positive semi-definite then � 2L�BB�x��� is positive semi-definite for all x∈X
and consequently L�BB�x��� is convex.

A number of methods have been developed that calculate appropriate values
for all �i
i=1
2
���
n that ensure the positive semi-definiteness of the interval
matrix �� 2L�BB�x���� and consequently the convexity of the underestimating
function L�BB�x���. These methods can be classified into two categories. The
first category consists of methods that find a common value for every parameter
�i, whereas methods of the second category calculate different values for each �i.

The most efficient of those methods is the scaled Gherschgorin, which we
introduce briefly. Its computational complexity is O�n2� and the quality of under-
estimators it produces is fairly good. The value for each parameter �i is deter-
mined by the equation

�i=max
{

0
−1
2

(
f

ii
−∑

j �=i

max
{	f

ij
	
	f ij 	

})dj

di

}
(5)

where f
ij

and f ij are the lower and upper bounds of  2f/ xixj as calculated
by interval analysis, and di
 i=1
2
���
n are positive parameters. A common
choice for those parameters is di=xU

i −xL
i , which reflects the fact that variables

with a wider range have a larger effect on the quality of the underestimator than
variables with a smaller range. In (Adjiman et al. (1998b)) have proven that the
values of �i defined by (5) are sufficient to ensure that L�BB�x��� is a convex
underestimator of the nonconvex function f �x�. An extensive coverage of the



A NEW CLASS OF CONVEX UNDERESTIMATORS 371

other methods based on interval analysis can be found in (Adjiman et al. (1998b)
and Floudas (2000)).

The effect of the addition of the relaxation function is twofold. The first is
to construct an underestimator due to the fact that ��x����0 for all x∈X.
The second is to guarantee that the underestimator is convex by assigning appro-
priate values on the parameters �i
 i=1
2
���
n. Those values convey second
order characteristics of the original nonconvex function f �x�. That is, the more
nonconvex f �x� is, the larger the values of �i
 i=1
2
���
n are.

A representative measure of the quality of an underestimator is the separation
distance between itself and the nonconvex function it underestimates. The smaller
the separation distance the tighter the underestimator is. Consequently, the tighter
the underestimators are the faster the convergence of the overall Branch and
Bound algorithm becomes. The separation distance between f �x� and L�BB�x���
is defined by the difference of these functions, that is,

d�BB�x���=f �x�−L�BB�x���=
n∑

i=1

�i�xi−xL
i ��x

U
i −xi��0� (6)

In (Maranas and Floudas (1994b)) it has been proved that the distance func-
tion, d�BB�x���, achieves its maximum at the middle point, xmid, of the interval
X= �xL
xU � and its value is

dmax
�BB= max

xL�x�xU
d�BB�x���=

1
4

n∑
i=1

�i�x
u
i −xL

i �
2� (7)

As can be seen from (7) the maximum separation distance between a nonconvex
function and its �BB underestimator is proportional to the �i’s. Furthermore,
it was shown in (Maranas and Floudas (1994b)) that the number of iterations
required by Branch and Bound to achieve �-convergence to the global minimum
depends on how large the values of �i
 i=1
2
���
n as well as the size of the
domains �xL

i 
x
U
i �, i=1
2
���
n.

3. The New Relaxation Term

In this section we present a new relaxation function. It shares most of the charac-
teristics of the relaxation function ��x��� used in �BB. Moreover, it possesses
novel additional properties that enable it to derive tighter convex underestimators.
The new relaxation function is defined as follows

#�x�$�=−
n∑

i=1

�1−e$i�xi−xLi ���1−e$i�x
U
i −xi��

where $=�$1
$2
���
$n�
T is a vector of non-negative parameters. As it will be

explained later, these parameters play a similar role as the �i’s in the �BB
method. Note that #�x�$� is not a quadratic function as ��x���.



372 I.G. AKROTIRIANAKIS AND C.A. FLOUDAS

The gradient of #�x�$� is

�#�x�$�=−




−$1e
$1�x1−xL1 �+$1e

$1�x
U
1 −x1�

−$2e
$2�x2−xL2 �+$2e

$2�x
U
2 −x2�

���

−$ne
$n�xn−xLn �+$ne

$n�x
U
n −xn�




and its Hessian is defined by the diagonal matrix

� 2#�x�$�=diag
{
$2
i e

$i�xi−xLi �+$2
i e

$i�x
U
i −xi� & i=1
2
���
n

}
Note that � 2#�x�$� is a function of x as opposed to the the Hessian matrix of
��x���, used in �BB, which is constant throughout the domain X.

The new relaxation function #�x�$� has the following important properties.

PROPERTY R1. #�x�$��0, for all x∈ �xL
xU �.
Proof. Since

e$i�xi−xLi ��1 and e$i�x
U
i −xi��1
 ∀xi∈ �xL

i 
x
U
i �
 $i�0 (8)

we can derive that −�1−e$i�xi−xLi ���1−e$i�x
U
i −xi���0. Taking the sum of the

previous inequality for i=1
2
���
n we conclude that #�x�$��0. �

PROPERTY R2. #�x�$� becomes zero at the corner points of the interval
�xL
xU �.

Proof. Let xC =�xC
1 
x

C
2 
���
x

C
n �

T be a corner point of X, that is, xC
i =xL

i or
xC
i =xU

i . Then we have

�1−e$i�x
C
i −xLi ���1−e$i�x

U
i −xCi ��=0
 i=1
2
���
n

Hence, #�xC�$�=0. �

PROPERTY R3. #�x�$� is a convex function.
Proof. Since the Hessian matrix, � 2#�x�$�, of #�x�$� is diagonal and for

each diagonal element we have

$2
i e

$i�xi−xLi �+$2
i e

$i�x
U
i −xi��0
 ∀xi∈ �xL

i 
x
U
i �
$i�0

we can conclude that � 2#�x�$� is positive semi-definite. Hence #�x�$� is a
convex function. �

PROPERTY R4. #�x�$� achieves its minimum at the middle point, xmid, of X
and its maximum at the corner points.

Proof. The solution of the system of equations �#�x�$�=0 is achieved at
the middle point, xmid, of the interval X= �xL
xU �, i.e.,

xmid
i = xU

i +xL
i

2

 i=1
2
���
n
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Since #�x�$� is a convex function, it achieves its minimum at xmid. The value
of #�x�$� at its minimum is

min
x∈X

#�x�$�=#�xmid�$�=−
n∑

i=1

�1−e
1
2 $i�x

U
i −xLi ��2

Also, since #�x�$��0 for all x∈X, we can derive that #�x�$� achieves its
maximum at all the corner points of X, that is,

max
x∈X

#�x�$�=#�xC�$�=0� �

PROPERTY R5. The ith diagonal element of � 2#�x�$� is a convex function
and achieves its minimum at the middle point and its maximum at the end points
of �xL

i 
x
U
i �.

Proof. Consider the i-th diagonal element of � 2#�x�$�

#xixi
�x�$�=  2#�x�$�

 x2
i

=$2
i e

$i�xi−xLi �+$2
i e

$i�x
U
i −xi��

Since the second derivative of #xixi
�x�$� is non-negative, that is,

d2

dx2
i

#xixi
=$4

i e
$i�xi−xLi �+$4

i e
$i�x

U
i −xi��0
 ∀x∈ �xL

i 
x
U
i �


#xixi
�x�$� is convex function. Also, the solution of the equation

d
dxi

#xixi
=$3

i e
$i�xi−xLi �−$3

i e
$i�x

U
i −xi�=0


is the middle point, xmid
i , of �xL

i 
x
U
i �. Hence #xixi

�x�$� achieves its minimum at
xmid
i , that is,

min
xi∈�xLi 
xUi �

#xixi
�x�$�=  2#�xmid

i �$�

 x2
i

=2$2
i e

1
2 $i�x

U
i −xLi � (9)

and its maximum at the two end points of �xL
i 
x

U
i �, that is,

max
xi∈�xLi 
xUi �

#xixi
�x�$� =  2#�xL

i �$�

 x2
i

=  2#�xU
i �$�

 x2
i

= $2
i +$2

i e
$i�x

U
i −xLi �� (10)

�

4. The New Underestimating Function

The new underestimating function is formed by adding #�x�$� to the nonconvex
function, that is,

L1�x�$�=f �x�+#�x�$� (11)
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The Hessian of L1 is

� 2L1�x�$�=� 2f �x�+� 2#�x�$�

The function L1�x�$� has a number of properties, which derive from the
properties of #�x�$�. These properties are as follows:

PROPERTY U1. L1�x�$� is an underestimator of f �x�
Proof. This is a consequence of Property R1. Since #�x�$��0 for all x∈X

and L1�x�$�=f �x�+#�x�$� we have L1�x�$��f �x� for every x∈X. �

PROPERTY U2. L1�x�$� matches f �x� at all the corner points of X
Proof. This property is a direct result of Property R2. �

PROPERTY U3. The maximum separation distance between the nonconvex
function f �x� and its underestimator L1�x�$� is bounded.

Proof. This property is a direct result of Property R4. The separation distance
between f �x� and L1�x�$� is

d1�x�$�=f �x�−L1�x�$�=
n∑

i=1

�1−e$i�xi−xLi ���1−e$i�x
U
i −xi��

The maximum of d1�x�$� is achieved at the middle point, xmid, of X and is equal
to

dmax
1 = max

xL�x�xU
d1�x�$�=

n∑
i=1

�1−e
1
2 $i�x

U
i −xLi ��2 (12)

Since X is a bounded interval, dmax
1 is also bounded. �

PROPERTY U4. Let X= �xL
xU �, Y = �yL
yU �, and X⊆Y ⊆�n. Also, let

LX
1 �x�$�=f �x�−

n∑
i=1

�1−e$i�xi−xLi ���1−e$i�x
U
i −xi��

and

LY
1 �x�$�=f �x�−

n∑
i=1

�1−e$i�xi−yLi ���1−e$i�y
U
i −xi��

Then the underestimator LX
1 �x�$�, is tighter than the understimator LY

1 �x�$�, i.e.,

LX
1 �x�$��LY

1 �x�$�
 ∀x∈X (13)

Proof. Since X⊆Y , for every i=1
2
���
n we have

xU
i �yU

i and xL
i �yL

i
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Taking into consideration that $i�0
 i=1
2
���
n, and that the exponential
function is monotonically increasing, the above two inequalities yield

−e$i�x
U
i −xi��−e$i�y

U
i −xi� and −e$i�xi−xLi ��−e$i�xi−yLi � (14)

for all x∈X. Also, from (8) and (14) we have

0�1−e$i�x
U
i −xi��1−e$i�y

U
i −xi�
 ∀x∈X

and

0�1−e$i�xi−xLi ��1−e$i�xi−yLi �
 ∀x∈X�

Multiplying the above two inequalities yields

−�1−e$i�xi−xLi ���1−e$i�x
U
i −xi���−�1−e$i�xi−yLi ���1−e$i�x

U
i −yi��


for all x∈X. From the above inequality we can easily derive that (13) holds. �

Since the function #�x�$� is convex for every x∈X and $�0, all non-
convexities in the original function f �x� can be eliminated, provided that the
parameters $i have the appropriate values. We have developed a systematic
procedure that determines values for all the parameters $i that not only guarantee
the convexity of the underestimating function L1�x�$� but also ensures that
L1�x�$� is tighter than the underestimating function L�BB�x���.

The initial value for each $i is selected by solving the system of non-linear
equations

)i+$2
i +$2

i e
$�xUi −xLi �=0
 i=1
2���
n (15)

where )i�0, i=1
2
���
n. The parameters )i are the means used to convey
second order characteristics of the original nonconvex function into the construc-
tion process of the underestimator. Candidate values for these parameters can be
provided by the scaled Gerschgorin method (Adjiman et al. (1998b)), that is

)i=max
{

0
−�f
ii
−∑

j �=i

max
{	f

ij
	
	f ij 	

}dj

di

}

 i=1
2���
n (16)

where f
ij

f ij and di are the same quantities as in (5). From (5) and (16) we can

derive that

)i=
1
2
�i
 i=1
2���
n (17)

Note that the term $2
i +$2

i e
$�xUi −xLi � in (15) represent the maximum value of the

second derivative of the ith diagonal element of � 2#�x�$�, defined in (10). Note
also that if )i=0, then from (15) we can deduce that the corresponding $i=0 too.
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Theorem 4.2 demonstrates the existence of a set of negative numbers )i,
i=1
2
���
n such that, if $i
i=1
2
���
n is the corresponding solution of the
system of equations (15), then L1�x�$� is a convex function. First we prove the
following lemma that is used in Theorem 4.2.

LEMMA 4.1. The function )i & �0
��→� defined by )i�$i�=−�$2
i +$2

i e
$�xUi −xLi ��

is monotonically decreasing and

lim
$i→�

)i�$i�=−� (18)

Proof. Let $′
i
$

′′
i ∈ �0
�� and $′

i�$′′
i . We have �$′

i�
2��$′′

i �
2 and e$′i �e$′′i . From

the two previous inequalities we obtain

�$′
i�

2+�$′
i�

2e$′i�xUi −xLi ���$′′
i �

2+�$′′
i �

2e$′′i �xUi −xLi �

Multiplying the above inequality by −1 yields

)i�$
′
i��)i�$

′′
i �


Hence, )i�$i� is a monotonically decreasing function. Equation (18) can be derived
by considering that )i�$i� is monotonically decreasing, always takes negative
values, and its domain, �0
��, is unbounded from above. �

THEOREM 4.2. There exists a vector )=�)1
)2
���
)n�
T , such that, if $=

�$1
$2
���
$n�
T is the solution of the system (15), then L1�x�$� is a convex

function.
Proof. Since f �x�∈C2, all its second partial derivatives are continuous and

hence bounded in the interval X= �xL
xU �. Hence, there exist large numbers
Mij >0
 i
j=1
2
���
n, such that

−Mij �
 2f �x�

 xi xj

�Mij

Also from (9), (10) and (18) we can derive that  2#�x�$�/ x2
i takes arbitrarily

large values in Xi= �xL
i 
x

U
i � as $i goes to infinity. Consequently, there must exist

a number )i <0 such that the corresponding $i that solves the ith equation of
the system (15) is sufficient to make the convex function  2#�x�$�/ xi xj the
dominant term in the ith row of the matrix � 2L1�x�$�. �

The following theorem examines the relationship between L1�x�$� and the
underestimator obtained by �BB.

THEOREM 4.3. Let $ be the vector containing the solutions of the system (15),
with )i defined by (16), and � be the vector of the �BB parameters, defined
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by (5). Then, the underestimating function L1�x�$� is always tighter than the
underestimating function L�BB�x���. That is,

L1�x�$��L�BB�x���
 ∀x∈X

Proof. It suffices to show that the distance between L1�x�$� and L�BB�x��� is
always non-negative, that is,

d�x�=L1�x�$�−L�BB�x����0
 ∀x∈X�

The function d�x� that expresses the distance between L1�x�$� and L�BB�x���
can be written as

d�x�=
n∑

i=1

�i�xi−xL
i ��x

U
i −xi�−

n∑
i=1

�1−e$i�xi−xLi ���1−e$i�x
U
i −xi��

The Hessian of d�x� is a diagonal matrix defined as

� 2d�x�=diag
{−2�i+$2

i e
$i�xi−xLi �+$2

i e
$i�x

U
i −xi� & i=1
2
���
n

}
Substituting (17) into the ith element of � 2d�x�, and using (10) and (15) we
obtain

)i+$2
i e

$i�xi−xLi �+$2
i e

$i�x
U
i −xi��)i+$2

i +$2
i e

$i�x
U
i −xLi �=0

From the above inequality we can derive that each element of the diagonal matrix
� 2d�x� is non-positive. Therefore � 2d�x� is negative semi-definite and d�x� is a
concave function. Also, evaluating d�x� at any corner point, xC , of the interval
X we have d�xC�=0. Since d�x� is concave in X and becomes zero at the corner
points of X we can conclude that d�x��0 for all x∈X. �

Remark 4.4. The above theorem justifies the use of system (15) in the calcu-
lation of the initial values of the parameters $i
 i=1
2
���
n. The solution of
system (15) guarantees that the new underestimator L1�x�$� is always tighter
than the underestimator L�BB�x��� of the classical �BB method. Note, however,
that the calculated $i
 i=1
2
���
n do not guarantee the convexity of the new
underestimator. As it will be described in the next section, the convexity of
L1�x�$� will be achieved by an iterative scheme.

5. Convexity of the New Underestimator

In this section we present an iterative scheme that determines whether the under-
estimating function L1�x�$� is convex. The scheme is based on interval analysis
and consecutive partitions of the domain X. Before we describe the scheme
we present two interesting results regarding the relationship between the maxi-
mum separation distances among f �x� and its two underestimators, L1�x�$� and
L�BB�x���, as well as the parameters $ and �.
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THEOREM 5.1. Let $=�$
1

$

2

���
$

n
�T be the solution of system (15), with )i

defined by (16). Then, the two underestimators L1�x�$� and L�BB�x���, where

�=
(

4�1−e0�5$
1
�xU1 −xL1 ��2

�xU
1 −xL

1 �
2


���

4�1−e0�5$

n
�xUn −xLn ��2

�xU
n −xL

n �
2

)T

(19)

have the same maximum separation distance from f �x�.
Proof. Substituting �=� in (7) and using (12) we obtain

dmax
�BB��� =

1
4

n∑
i=1

4�1−e0�5$
i
�xUi −xLi ��2

�xU
i −xL

i �
2

�xU
i −xL

i �
2

=
n∑

i=1

�1−e0�5$
i
�xUi −xLi �/2�2

= dmax
1 �$�� �

THEOREM 5.2. Let �=��1
�2
���
�n�
T be the values of the � parameters as

computed by (5). Then, the two underestimators L1�x�$� and L�BB�x���, where

$=
(

2 log�1+√
�1�x

U
1 −xL

1 �/2�

xU
1 −xL

1


���

2 log�1+√

�n�x
U
n −xL

n �/2�

xU
n −xL

n

)T

(20)

have the same maximum separation distance from f �x�.
Proof. Substituting $=$ in (12) we obtain

dmax
1 �$� =

n∑
i=1

(
1−e

1
2

2 log�1+√�i�x
U
i −xLi �/2�

xUi −xLi

�xUi −xLi �
)2

=
n∑

i=1

�1−elog�1+
√

�i�x
U
i −xLi �/2��2

=
n∑

i=1

(
1−

(
1+ 1

2

√
�i�x

U
i −xL

i �

))2

= dmax
�BB���� �

The main result of the above two theorems is that, for any $∈ �$
$� there
exists an �∈ ��
��, such that the underestimators L1�x�$� and L�BB�x��� have
the same maximum separation distance from the nonconvex function f �x�. From
all these pairs of underestimators, the only one that is known to be convex
a priori is L�BB�x���, since this is the one resulting from the classical �BB
method. However, as it will be apparent from several examples in the next
section, for most arbitrarily nonconvex functions the underestimators L�BB�x���
and L1�x�$� are convex within a large portion of the intervals ��
�� and �$
$�
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respectively. Based on the above observations, it is natural to search for a vector
$ in the interval �$
$� or for a vector � in the interval ��
��, so that at least one
of the underestimators L1�x�$�, L�BB�x��� is convex.

5.1. ALGORITHM FOR CONVEXITY VERIFICATION

The main aim of this algorithm is to determine appropriate values for the $
parameters so that the corresponding underestimator is both convex function and
tighter than the underestimator used by the classical �BB method. This is very
important issue, since the tighter the underestimator is, the better the quality of
the lower bound on the global optimum is. Also, the size of the enumeration tree
becomes smaller, since a larger number of nodes can be fathomed. Therefore,
the overall efficiency of the algorithm is enhanced, because the global optimum
of the problem is reached by considering fewer nodes.

The algorithm we have developed searches for a vector $∈ �$
$� so that
the corresponding �∈ ��
��, produces an underestimating function L�BB�x���
that is convex. The search starts by setting $=$ and �=� and then checking
whether L�BB�x��� is convex. This is done by using the scaled Gerschgorin
method to determine lower bounds on the eigenvalues of the Hessian matrix
� 2L�BB�x���. For those lower bounds that are negative, we bisect the intervals of
the corresponding variables, thereby generating a number of sub-domains that are
stored in a list, denoted by -1. Then the algorithm checks whether � 2L�BB�x���
is positive semi-definite in each of those sub-domains using again the scaled
Gerschgorin method. If the size of the list, -1, exceeds a certain number of nodes
then � 2L�BB�x��� is most likely not positive semi-definite, and the values of all
$i’s are increased by a prespecified positive quantity, .>0, and the corresponding
values of the new �i’s are calculated. The algorithm now tries to verify whether
� 2L�BB�x���, with the new increased �, is positive semi-definite. It continues
in this manner until the list -1 becomes empty. In that case the corresponding
� makes the Hessian matrix, � 2L�BB�x���, positive semi-definite for all x∈X
and consequently L�BB�x��� a convex underestimator. The main reason for using
the underestimator L�BB�x��� instead of the underestimator L1�x�$� is that, it is
easier to verify the positive definiteness of the matrix � 2L�BB�x��� than that of
the matrix � 2L1�x�$�. The algorithm in detail is as follows:

ALGORITHM 1. Verification of Convexity

STEP 1: (Initialization) Set K=1
J=1, Jmax=2n+1, .=1�1, XJ =X, -1=
�XJ� and $i
K=$

i
.

STEP 2: Use (19) to calculate the �i
K
 i=1
2
���
n that correspond to the
$i
K
 i=1
2
���
n, and form the underestimator L�BB�x��K�.

STEP 3: If the maximum separation distance of L�BB�x��K� from f �x� is less
than the maximum separation distance of L�BB�x��� from f �x� then
GoTo Step 4.
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Otherwise, adopt as underestimator the classical �BB underestimator,
L�BB�x���, and STOP.

STEP 4: Check whether L�BB�x��K� is convex:
Repeat

STEP 4.1: Remove the last element from the list -1 of unexplored
sub-domains. Let us name that sub-domain Xlast.

STEP 4.2: Form the interval Hessian �� 2L�BB�x��K�� with x∈Xlast.
STEP 4.3: Use (16) to find lower bounds on each eigenvalue of the

interval Hessian �� 2L�BB�x��K�� in Xlast.
STEP 4.4: Form the set I−=�i &)i <0�.
STEP 4.5: If I− �=∅, bisect all intervals �xL

i
last
x
U
i
last� with i∈ I−, and add

them at the end of the list -1.
STEP 4.6: Set J=J+2	I−	−1, where 	I−	 represents the cardinality of

the set I− (i.e., a total of 2	I−	 new sub-domains have been
generated and added to the list and one node have been
removed).

Until (-1=∅ or J=Jmax)
STEP 5: If -1=∅ then STOP. The Hessian � 2L�BB�x��K� is positive semi-

definite for all x∈X and L�BB�x��K� is a convex underestimator.
Also the underestimator L�BB�x��K� is tighter than the underestimator
L�BB�x��� obtained by the classical �BB method.

Otherwise, increase the values of all $i
K
i=1
2
���
n by setting
$i
K+1=.$i
K . Set K=K+1 and GoTo Step 2.

Termination of Algorithm 1 is guaranteed by the fact that L�BB�x��� is known
a priori to be convex underestimator.

6. Examples

In this section we present several examples which demonstrate that for arbitrarily
nonconvex functions the method can produce significantly tighter underestimators
than those produced by �BB.

It should be mentioned that the new underestimators require more computa-
tional effort than the ones used by the classical �BB method. This is because
the new underestimators require the solution of the system of nonlinear equations
(15), in order to determine the appropriate values of the $ parameters. A detailed
computational comparison between the new underestimators and the ones used
by the classical �BB method, is provided in Akrotirianakis and Floudas (2004).
From that computational study we have concluded that the new underestima-
tors usually perform better than the classical �BB method, both in terms of the
overall CPU time and the number of nodes generated by the enumeration tree.
From that computational study we can also derive that the new underestimators
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perform better when the problem involves many arbitrarily nonconvex terms in
the objective or constraints.

EXAMPLE 1. In this example we examine an arbitrarily nonconvex function that
describes the molecular conformation of pseudoethane. It is taken from (Floudas
et al. (1999) and Maranas and Floudas (1994a)) where the global minimum
potential energy conformation of small molecules is studied. The Lennard-Jones
potential is expressed in terms of a simple dihedral angle. The potential energy
of the molecule is given by the function

f1�x� =
588600

�3r2
0 −4cos�3�r2

0 −2�sin2�3�cos�x− 24
3 �−cos2�3��r2

0 �
6
−

− 1079�1

�3r2
0 −4cos�3�r2

0 −2�sin2�3�cos�x− 24
3 �−cos2�3��r2

0 �
3
+

+ 600800

�3r2
0 −4cos�3�r2

0 −2�sin2�3�cos�x�−cos2�3��r2
0 �

6
−

− 1071�5

�3r2
0 −4cos�3�r2

0 −2�sin2�3�cos�x�−cos2�3��r2
0 �

3
+

+ 481300

�3r2
0 −4cos�3�r2

0 −2�sin2�3+ 24
3 �cos�x�−cos2�3��r2

0 �
6
−

− 1064�6

�3r2
0 −4cos�3�r2

0 −2�sin2�3+ 24
3 �cos�x�−cos2�3��r2

0 �
3

where r0 is the covalent bond length (r0=1�54A), 3 is the covalent bond angle
(3=109�5�) and x is the dihedral angle (x∈X= �0
24�). Figure 1 shows the
graph of f1�x�.

The value of the � parameter computed by the classical �BB method using
(5) is

�=77�124

and the corresponding value for the $ parameter, obtained by (20), is

$=1�0673

Also by solving (15) for $ we obtain

$=0�8521

and the corresponding value for the � parameter, obtained by (19), is

�=18�579
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Figure 1. The potential energy function f1�x�.

Algorithm 1 checks whether there exist values of $∈ �$
$� and �∈ ��
�� such
that the underestimator L�BB�x��� is convex. After 16 iterations it concludes that
if �=�, then L�BB�x��� is a convex underestimator of f1�x�. Furthermore, if
$=$ then L1�x�$� is a convex underestimator of f1�x� too. Note that the value
of $ as well as the value of � did not increase at all.

The minima of the two underestimators L�BB�x��� and L�BB�x��� are

min
x∈X

L�BB�x���=−762�2377 and min
x∈X

L�BB�x���=−184�4244

Figure 2 compares the two underestimators L�BB�x��� and L�BB�x��� and
shows the improvement. The relative improvement of the new underestimator
L�BB�x��� compared to the original �BB underestimator, L�BB�x���, is equal to

r=1−minx∈XL�BB�x���

minx∈XL�BB�x���
=0�758

EXAMPLE 2. This example is taken from (Adjiman et al. (1998b)) and examines
a two dimensional nonconvex function defined as

f2�x�=cos�x1�sin�x2�−
x

y2+1
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Figure 2. Comparison of the underestimators L�BB�x��� and L�BB�x��� of the nonconvex
function f1�x�.

where x1∈ �−1
2� and x2∈ �1
1�. The above function possesses three minima and
its graph is shown in Figure 3. The values of the � parameters computed by the
classical �BB method using (5) are

�1=1�921 and �2=10�921

Using (20) we can determine the corresponding value for the $ parameters

$1=0�75 and $2=1�46

Figure 3. The graph of f2�x�.
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Also by solving (15) for $i
 i=1
2, we obtain

$
1
=0�672 and $

2
=1�267

Using (19) we can determine the corresponding value for the �i
 i=1
2,

�1=1�3456 and �2=6�5

Algorithm 1 checks whether there exist values of $i∈ �$
i

$i�
 i=1
2 and

�i∈ ��i
�i�
 i=1
2, such that the underestimator L�BB�x��� is convex. After 8
iterations it concludes that if $=�0�74
$

2
� and �=�1�8325
�2�, then L�BB�x���

is a convex underestimator of f �x�. Also, if $=�0�74
$
2
� then L1�x�$� is a

convex underestimator of f2�x�. Note that only the value of $1 needed to increase
by 10% from its original value.

The minima of the two underestimators L�BB�x��� and L�BB�x��� are

minL�BB�x���=−15�88469 and minL�BB�x���=−10�22767�

Figure 4 compares the two underestimators L�BB�x��� and L�BB�x��� and
shows the improvement we get if we use the �i’s calculated by Algorithm 1.

Figure 4. Comparison of the underestimators L�BB�x��� and L�BB�x��� of the nonconvex
function f2�x�.
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The relative improvement of the new underestimator L�BB�x��� compared to the
original �BB underestimator, L�BB�x���, is equal to

r=1−minx∈XL�BB�x���

minx∈XL�BB�x���
=0�3561�

EXAMPLE 3. This example is taken from (Floudas et al. (1999)) and (Dixon
and Szego (1975)) and examines a two dimensional nonconvex function defined
as

f3�x� = − 1
�x1−4�2+�x2−4�2+0�1

− 1
�x1−1�2+�x2−1�2+0�2

−

− 1
�x1−8�2+�x2−8�2+0�2

where x1∈ �0
10� and x2∈ �0
10�. The above function possesses three minima
and its graph is shown in Figure 5. The values of the � parameters computed by
the classical �BB method using (5) are

�1=433000 and �2=433000

Figure 5. The graph of f3�x�.
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Substituting the above values into (20) we can determine the corresponding value
for the $ parameters

$1=1�6198 and $2=1�6198

Also, by solving (15) for $i
 i=1
2, we obtain

$
1
=1�3127 and $

2
=1�3127

and using (19) we can determine the corresponding value for the �i
 i=1
2,

�1=20044�4 and �1=20044�4

Algorithm 1 checks whether there exist values of $i∈ �$
i

$i�
 i=1
2 and

�i∈ ��i
�i�
 i=1
2, such that the underestimator L�BB�x��� is convex. After
8 iterations it concludes that if $=�$

1

$

2
� and �=��1
�2�, then L�BB�x���

is a convex underestimator of f �x�. Also, if $=$ then L1�x�$� is a convex
underestimator of f3�x�. Note that none of the $i’s or �i’s needed to increase in
order to obtain a convex underestimator.

The minima of the two underestimators L�BB�x��� and L�BB�x��� are

minL�BB�x���=−2�165×107 and minL�BB�x���=−1�002×106�

Figure 6 compares the two underestimators L�BB�x��� and L�BB�x��� and
shows the improvement we get if we use the �i’s calculated by Algorithm 1.
The relative improvement of the new underestimator L�BB�x��� compared to the
original �BB underestimator, L�BB�x���, is equal to

r=1−minx∈XL�BB�x���

minx∈XL�BB�x���
=0�9537�

EXAMPLE 4. This example is taken from (Goldstein and Price (1971)) and
considers the nonconvex function

f4�x� = ��1+�x1+x2+1�2�19−14x1+3x2
1−14x2+6x1x2+3x2��×

×�30+�2x1−3x2�
2�18−32x1+12x2

1+48x2−36x1x2+27x2
2��

where x1∈ �−2
2� and x2∈ �−2
2�. The graph of f4 is shown in Figure 7. The
values of the � parameters computed by the classical �BB method using (5) are

�1=2�2646×108 and �2=2�9034×107

Using (20) we can determine the corresponding value for the $ parameters

$1=5�1561 and $2=5�2182
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Figure 6. Comparison of the underestimators L�BB�x��� and L�BB�x��� of the nonconvex
function f3�x�.

Also by solving (15) for $i
 i=1
2, we obtain

$
1
=4�2583 and $

2
=4�3140

Using (19) we can determine the corresponding value for the �i
 i=1
2,

�1=6�2416×106 and �2=7�7976×106

Algorithm 1 checks whether there exist values of $i∈ �$
i

$i�
 i=1
2 and

�i∈ ��i
�i�
 i=1
2, such that the underestimator L�BB�x��� is convex. After
16 iterations it concludes that if $=�4�3861
4�4434� and �=�1�04×107
1�31×
107�, then L�BB�x��� is a convex underestimator of f �x�. Furthermore, if $=
�4�3861
4�4434� then L1�x�$� is a convex underestimator of f4�x�. Note that
both of the $i’s have been increased by 5%.

The minima of the two underestimators L�BB�x��� and L�BB�x��� are

minL�BB�x���=−2�0672×109 and minL�BB�x���=−9�3967×107�

Figure 8 compares the two underestimators L�BB�x��� and L�BB�x��� and
shows the improvement we get if we use the �i’s calculated by Algorithm 1.
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Figure 7. The graph of f4�x�.

Figure 8. Comparison of the underestimators L�BB�x��� and L�BB�x��� of the nonconvex
function f4�x�.
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The relative improvement of the new underestimator L�BB�x��� compared to the
original �BB underestimator, L�BB�x���, is equal to

r=1−minx∈XL�BB�x���

minx∈XL�BB�x���
=0�9545�

7. Conclusions

A new method for generating improved convex underestimators for arbitrarily
nonconvex functions that are twice continuously differentiable has been pre-
sented. A new relaxation function has been introduced and it has been shown
that it possesses similar properties to those possessed by the relaxation function
used in the �BB method. The underestimators are formed by subtracting the new
relaxation function from the original nonconvex function. It is proven that the
new underestimators are tighter than the �BB underestimators, because the new
relaxation function is always less than the one used in �BB. A rigorous procedure
that verifies the convexity of the new improved underestimators has been devel-
oped. That procedure is based on interval analysis and partitioning of the feasible
region into smaller ones. The ability of the new method to produce tighter under-
estimators than those used in �BB has been illustrated in several examples. The
incorporation of the new underestimators within a Branch-and-Bound framework,
algorithmic issues, and computational studies will be reported in a forthcoming
paper.
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